TerraSAR-X

Discover what’s possible.

Get a complimentary consultation today.

TerraSAR-X Radar Satellite

The successful launch of TerraSAR-X took place on June 15, 2007, from the Russian Cosmodrome, Baikonur, Kazakhstan, on a Russian/Ukrainian Dnepr-1 launch vehicle with a 1.5 m long fairing extension. Launch provider: ISC Kosmotras, Moscow.

TerraSAR-X Radar Satellite

Copyright © AIRBUS Defence & Space. All rights reserved.

In 2002, AIRBUS Defence and Space was awarded a contract to implement the X-band TerraSAR satellite (TerraSAR-X) based on a public-private partnership agreement (PPP). In this arrangement, AIRBUS Defence and Space funded part of the implementation cost of the TerraSAR-X system. The satellite is owned and operated by DLR, and the scientific data rights remain with DLR. The satellite has a design life of at least five years. TerraSAR-X is of SIR-C/X-SAR (1994) and SRTM (2000) heritage – DLR SAR instruments flown on shuttle missions.

The science objectives are to make multi-mode and high-resolution X-band data available for a wide spectrum of scientific applications in such fields as: hydrology, geology, climatology, oceanography, environmental and disaster monitoring, and cartography (DEM generation) making use of interferometry and stereometry.

The TerraSAR-X has the primary objective to acquire 2D SAR observations in the operational modes Stripmap, ScanSAR and Spotlight. These objectives are being pursued in parallel to the TanDEM mission; these functions are supported by both spacecraft of the formation. The TanDEM mission has the primary goal to generate a global DEM, while the secondary objective is to support also the goals of the current science mission. The aim is to continue to operate both satellites using interferometry, to enable three-dimensional imaging of the surface of the Earth to continue. After changing the orbit of TanDEM-X in recent weeks, the two satellites are being operated independently of one another, in what is known as ‘Pursuit Monostatic Mode’. The advantage of this new orbital configuration is that the distance between the satellites – the baseline – can be made substantially more flexible. In the new orbital configuration, data for elevation models can be generated with an elevation accuracy of a few tens of centimeters, for example. This opens up new applications in the areas of the geosphere, cryosphere and hydrosphere.

TerraSAR-X Staring Spotlight mode provides the highest spatial resolution presently available on a commercial spaceborne SAR system. The TerraSAR-X Staring Spotlight mode provides a means to assess man-made objects more precisely. Image measurements of size, shape and positions are more accurate, target interpretation is more reliable.

TerraSAR-X Radar Satellite Specifications

Operational life

5 years, for both satellites (TerraSAR-X and TanDEM-X), an extended lifetime of that least another 5 years (beyond 2018) is expected by the operator DLR (Status: April 2014).

Orbit

Sun-synchronous repeat orbit

Repeat period

11 days

Equatorial crossing time (GMT)

18:00 hrs ascending pass (± 0.25h) 06:00 hrs descending pass (± 0.25h)

Inclination

97.44°

Altitude at the equator

514 km (319.8 miles)

Antenna type

Active Phases Array Antenna, electronically separable

Antenna size

4.78 m x 0.7 m (15.7 feet x 2.3 feet)

Centre Frequency

9.65 GHz (X band)

Chirp bandwidth

150 MHz / 300 MHz

Nominal acquisition direction

Right side

Polarization

Single, dual – depending on imaging mode quadruple is available as advanced polarisation mode for dedicated acquisition campaigns

Resolution

Satellite Sensor

IMAGING Corporation Satellite Sensors

Ready to get started?

Contact us for a custom imagery solution or request a quote

TESTIMONIALS

Stories & Experiences

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation. .

FAQ’S

Frequently Asked Questions

How to find Geographic Coordinates in Google maps?

To find geographic coordinates in Google Maps, you can follow these steps:

  1. Open Google Maps in your web browser or on your mobile device.

  2. Search for the location you want to find the geographic coordinates for by entering the address, landmark, or name of the place in the search bar at the top of the page.

  3. Once the location is displayed on the map, right-click (or long-press on mobile) the exact point on the map where you want to find the coordinates. This will open a small menu.

  4. In the menu that appears, click on “What’s here?” or “What’s here? – Coordinates” option. On mobile devices, you may need to tap on the location marker first to reveal the menu options.

  5. A small information box will appear at the bottom of the screen, displaying the latitude and longitude coordinates of the selected point. The coordinates will be shown in decimal degrees format.

  6. You can click on the coordinates in the information box to expand it and see the coordinates in different formats, such as degrees, minutes, and seconds (DMS) or Universal Transverse Mercator (UTM) format.

To create a KML (Keyhole Markup Language) file in Google Earth, you can follow these steps:

  1. Download Google Earth Pro and Open on your computer.

  2. Navigate to the location or area you want to create a KML file for by using the search bar, zooming in/out, and panning on the map.

  3. Customize the view and layers in Google Earth Pro to include the specific data or elements you want to include in your KML file. This can include placemarks, paths, polygons, overlays, images, and more.

  4. Once you have set up the desired view and layers, go to the “Add” menu at the top of the screen and select the type of element you want to add (e.g., placemark, path, polygon, image overlay).

  5. Follow the prompts to add the specific element and provide the necessary information, such as location coordinates, name, description, and any additional properties or styling options.

  6. Repeat the previous step if you want to add more elements to your KML file.

  7. After adding all the desired elements, go to the “File” menu and select “Save Place As.”

  8. In the “Save Place As” dialog box, choose a location on your computer where you want to save the KML file.

  9. Specify the name of the KML file, ensuring it has the .kml extension (e.g., myfile.kmL), you may need to select KML as GoogleEarth defaults to KMZ formats.

  10.  Click the “Save” button to save the KMZ file to the specified location on your computer.

Ordering commercial high-resolution and medium-resolution satellite maps process:

  1. Identify your requirements: Determine the specific needs for the satellite maps, including the desired resolution, geographic coverage, acquisition date, and any additional specifications such as spectral bands or cloud cover constraints.

  2. Contact Us: Reach out to us to inquire about our imaging product and services. Provide us with the details of your requirements, including the area of interest, resolution, and any other specifications.

  3. If there is high urgency for imagery, please let us know that this is a time sensitive project. Any project deadlines should be included with your initial contact.

  4. Request a quote: Ask for a formal quote for the satellite maps you need. The quote should include information such as the cost, delivery timeline, licensing terms, and any additional services like data processing or analysis.

  5. Review the quote: Evaluate the quote provided by us and if needed, we can negotiate the terms, pricing, or any specific requirements that may not be fully covered.

  6. Confirm the order: Once you are satisfied with the quote and have reached an agreement, confirm your order. We will guide you through the necessary steps for payment and delivery.

  7. Receive the satellite maps: After the order is confirmed and payment is processed, you will receive the satellite map data in the specified format. This may include downloading the data from a secure portal or receiving physical media, depending on delivery method.

  8. Utilize the satellite maps: With the satellite maps that you receive, you can utilize it for your intended purposes, such as GIS data, 3D terrain maps, disaster, geospatial data, and other applications as needed.

Satellite map raw files refer to the unprocessed and unedited data captured by satellite sensors. These files contain the raw data received by the satellite sensors, including the reflected or emitted electromagnetic radiation from the Earth’s surface.

Satellite map raw files typically come in specialized formats specific to each satellite sensor or provider. These formats may include formats like GeoTIFF (georeferenced Tagged Image File Format) or ENVI (Environment for Visualizing Images). The raw files preserve the original sensor readings, which can include various spectral bands, radiometric information, and geometric parameters.

Raw files require processing to convert them into usable formats, such as georeferenced images or digital elevation model(DEM). Processing steps may involve radiometric and geometric corrections, atmospheric compensation, calibration, orthorectification, and mosaicking, among others.

Once processed, raw files can provide valuable information for various GIS data applications, including 3D terrain maps, agriculture production maps, vegetation maps, and disaster maps.

To download satellite maps from an FTP (File Transfer Protocol) server, you can follow these general steps:

  1. Obtain the FTP server information: Get the FTP server details from the satellite maps provider or the source you are accessing. This includes the FTP server address, username, password, and potentially the directory path to the imagery files.

  2. Choose an FTP client: Select an FTP client software or application that allows you to connect to the FTP server and perform file transfers. Some popular options include FileZilla, WinSCP, Cyberduck, or the built-in FTP functionality of certain web browsers.

  3. If you are unable to download an FTP client due to software locks, Windows has a built in FTP Protocol that can be accessed by copying the URL of the FTP server in your Windows File Explorer.

  4. Depending on the method to connect to the FTP, you will need credentials including a Username and Password to access these file.

  5. Most FTP clients will allow you to Copy and Paste or Drag and Drop the files from the client window to your local files.

Remember to comply with any terms and conditions associated with the satellite map data, including usage restrictions, licensing agreements, and any attribution requirements specified by the provider.

For any other questions or for a consultation, please contact us.

Scroll to Top